Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway

نویسندگان

  • Renée M. Gilberti
  • David A. Knecht
چکیده

Silica inhalation leads to the development of the chronic lung disease silicosis. Macrophages are killed by uptake of nonopsonized silica particles, and this is believed to play a critical role in the etiology of silicosis. However, the mechanism of nonopsonized-particle uptake is not well understood. We compared the molecular events associated with nonopsonized- and opsonized-particle phagocytosis. Both Rac and RhoA GTPases are activated upon nonopsonized-particle exposure, whereas opsonized particles activate either Rac or RhoA. All types of particles quickly generate a PI(3,4,5)P3 and F-actin response at the particle attachment site. After formation of a phagosome, the events related to endolysosome-to-phagosome fusion do not significantly differ between the pathways. Inhibitors of tyrosine kinases, actin polymerization, and the phosphatidylinositol cascade prevent opsonized- and nonopsonized-particle uptake similarly. Inhibition of silica particle uptake prevents silica-induced cell death. Microtubule depolymerization abolished uptake of complement-opsonized and nonopsonized particles but not Ab-opsonized particles. Of interest, regrowth of microtubules allowed uptake of new nonopsonized particles but not ones bound to cells in the absence of microtubules. Although complement-mediated uptake requires macrophages to be PMA-primed, untreated cells phagocytose nonopsonized silica and latex. Thus it appears that nonopsonized-particle uptake is accomplished by a pathway with unique characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP.

Phagocytosis of nonopsonized bacteria is central to innate immunity, but its regulation is less defined. We show that overexpression of the P2X(7) receptor greatly augments the phagocytosis of nonopsonized beads and heat-killed bacteria by transfected HEK-293 cells, whereas blocking P2X(7) expression by siRNA significantly reduces the phagocytic ability of human monocytic cells. An intact P2X(7...

متن کامل

The Phagocytosis and Toxicity of Amorphous Silica

BACKGROUND Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic i...

متن کامل

Paracrine downregulation of Fc gamma RIII in human monocyte-derived macrophages induced by phagocytosis of nonopsonized particles.

Monocytes and macrophages can take up nonopsonized particles through a direct phagocytic process and IgG-coated particles through combined mechanisms of nonspecific phagocytosis and internalization mediated by specific Fc receptors for IgG (Fc gamma R) on the plasma membrane. In this study, we report the effect of phagocytosis of nonopsonized latex beads on the levels of expression of Fc gamma ...

متن کامل

Interferon-γ inhibits nonopsonized phagocytosis of macrophages via an mTORC1-c/EBPβ pathway.

Bacterial infection often follows virus infection due to pulmonary interferon-γ (IFN-γ) production during virus infection, which down-regulates macrophage phagocytosis. The molecular mechanisms for this process are still poorly understood. In the present study, IFN-γ treatment significantly inhibited the ability of mouse macrophages to phagocytize nonopsonized chicken red blood cells (cRBCs), b...

متن کامل

The IL-4R pathway in macrophages and its potential role in silica-induced pulmonary fibrosis

Crystalline silica exposure can result in pulmonary fibrosis, where the pulmonary macrophage is key as a result of its ability to react to silica particles. In the mouse silicosis model, there is initial Th1-type inflammation, characterized by TNFand IFN. Previous studies determined that Th2 mediators (i.e., IL-13) are vital to development of pulmonary fibrosis. The present study, using in vivo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015